Numerische Simulation Auf Massiv Parallelen Rechnern Error Estimation for Anisotropic Tetrahedral and Triangular Nite Element Meshes

نویسنده

  • Gerd Kunert
چکیده

Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the nite element method (FEM), anisotropically reened meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes many estimators are known, but they either fail when used on anisotropic meshes, or they were not applied yet. For rectangular (or cuboidal) anisotropic meshes a modiied error estimator had already been found. We are investigating error estimators on anisotropic tetrahedral or triangular meshes because such grids ooer greater geometrical exibility. For the Poisson equation a residual error estimator, a local Dirichlet problem error estimator, and an L 2 error estimator are derived, respectively. Additionally a residual error estimator is presented for a singularly perturbed reaction diiusion equation. It is important that the anisotropic mesh corresponds to the anisotropic solution. Provided that a certain condition is satissed, we have proven that all estimators bound the error reliably.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerische Simulation Auf Massiv Parallelen Rechnern Interpolation of Non-smooth Functions on Anisotropic Nite Element Meshes

In this paper, several modiications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483{493) are discussed. The modiied operators are deened for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reeected in the local stability and approximation error estimates. As an application, an example is consid...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern Crouzeix-raviart Type Nite Elements on Anisotropic Meshes

The paper deals with a non-conforming nite element method on a class of anisotropic meshes. The Crouzeix-Raviart element is used on triangles and tetrahedra. For rectangles and prismatic (pentahedral) elements a novel set of trial functions is proposed. Anisotropic local interpolation error estimates are derived for all these types of element and for functions from classical and weighted Sobole...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Construction and Error Estimation in the Nite Element Method Preprint-reihe Des Chemnitzer Sfb 393

In an anisotropic adaptive nite element algorithm one usually needs an error estimator that yields the error size but also the stretching directions and stretching ratios of the elements of a (quasi) optimal anisotropic mesh. However the last two ingredients can not be extracted from any of the known anisotropic a posteriori error estimators. Therefore a heuristic approach is pursued here, name...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern Preprint-reihe Des Chemnitzer Sfb 393

The nite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges Abstract. This paper is concerned with a speciic nite element strategy for solving elliptic boundary value problems in domains with corners and edges. First, the anisotropic singular behaviour of the solution is described. Then the nite element method with anisotropic, graded meshes and...

متن کامل

Numerische Simulation auf massiv parallelen Rechnern

The paper is concerned with algorithms for transforming hexahedral finite element meshes into tetrahedral meshes without introducing new nodes. Known algorithms use only the topological structure of the hexahedral mesh but no geometry information. The paper provides another algorithm which is then extented such that quality criteria for the splitting of faces are respected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997